Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Cat Swarm Optimization

نویسندگان

  • Kuan-Cheng Lin
  • Yi-Hung Huang
  • Jason C. Hung
  • Yung-Tso Lin
چکیده

Recently, applications of Internet of Things create enormous volumes of data, which are available for classification and prediction. Classification of big data needs an effective and efficient metaheuristic search algorithm to find the optimal feature subset. Cat swarm optimization (CSO) is a novel metaheuristic for evolutionary optimization algorithms based on swarm intelligence. CSO imitates the behavior of cats through two submodes: seeking and tracing. Previous studies have indicated that CSO algorithms outperform other well-known metaheuristics, such as genetic algorithms and particle swarm optimization. This study presents a modified version of cat swarm optimization (MCSO), capable of improving search efficiency within the problem space. The basic CSO algorithm was integrated with a local search procedure as well as the feature selection and parameter optimization of support vector machines (SVMs). Experiment results demonstrate the superiority of MCSO in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original CSO algorithm. Moreover, experiment results show the fittest CSO parameters and MCSO take less training time to obtain results of higher accuracy than original CSO. Therefore, MCSO is suitable for real-world applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Intelligent Optimization Methods for High-Dimensional Data Classification for Support Vector Machines

Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel in...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

An improved particle swarm optimization for feature selection

Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rule...

متن کامل

Classification of Clustered Microcalcifications in Mammograms using Particle Swarm Optimization and Least-Squares Support Vector Machine

Feature selection and classifier hyper-parameter optimization are important stages of any computer-aided diagnosis (CADx) system for mammography. The optimal selection for shape features, kernel parameter, and classifier regularization constant is crucial to achieve a good generalization and performance of least-squares support vector machines (LSSVMs). This paper presents a morphology-based CA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJDSN

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015